Maximum Likelihood Decoding of Neuronal Inputs from an Interspike Interval Distribution
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Decoding of Neuronal Inputs from an Interspike Interval Distribution
An expression for the probability distribution of the interspike interval of a leaky integrate-and-fire (LIF) model neuron is rigorously derived, based on recent theoretical developments in the theory of stochastic processes. This enables us to find for the first time a way of developing maximum likelihood estimates (MLE) of the input information (e.g., afferent rate and variance) for an LIF ne...
متن کاملInterspike interval distributions of spiking neurons driven by fluctuating inputs.
Interspike interval (ISI) distributions of cortical neurons exhibit a range of different shapes. Wide ISI distributions are believed to stem from a balance of excitatory and inhibitory inputs that leads to a strongly fluctuating total drive. An important question is whether the full range of experimentally observed ISI distributions can be reproduced by modulating this balance. To address this ...
متن کاملQuasistatic approximation of the interspike interval distribution of neurons driven by time-dependent inputs.
Variability in neural responses is a ubiquitous phenomenon in neurons, usually modeled with stochastic differential equations. In particular, stochastic integrate-and-fire models are widely used to simplify theoretical studies. The statistical properties of the generated spikes depend on the stimulating input current. Given that real sensory neurons are driven by time-dependent signals, here we...
متن کاملOn Calculating the Nonparametric Maximum Likelihood Estimator of a Distribution given Interval Censored Data on Calculating the Nonparametric Maximum Likelihood Estimator of a Distribution given Interval Censored Data
SUMMARY We introduce an algorithm for calculating the nonparametric maximum likelihood estimator of a distribution function when data are interval censored. This algorithm has advantages over existing methods such as the pool-adjacent-violators algorithm and the greatest-convex-minorant algorithm. We establish a theoretical result related to the expected run time of the new method.
متن کاملMaximum Likelihood Decoding of Reed Solomon Codes
We present a randomized algorithm which takes as input n distinct points {(xi, yi)}i=1 from F ×F (where F is a field) and integer parameters t and d and returns a list of all univariate polynomials f over F in the variable x of degree at most d which agree with the given set of points in at least t places (i.e., yi = f(xi) for at least t values of i), provided t = Ω( √ nd). The running time is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2009
ISSN: 0899-7667,1530-888X
DOI: 10.1162/neco.2009.06-08-807